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Abstract 

Background and Objectives 

The Next Generation (NexGen) of Risk Assessment effort is a multiyear, multimillion­

dollar collaboration by U.S. federal and state regulatory agencies, international agencies, 

academic institutions, and the nonprofit sector to evaluate new, potentially more efficient 

approaches to environmental health risk assessment. NexGen was motivated by recent advances 

in molecular, computational, and systems biology that might augment or replace existing risk 

assessment methods. The purpose of this paper is to provide the key findings of the NexGen 

program and to identify strategic directions for additional research. 

Methods 

Central to the NexGen effort was to evaluate how new data, methods and models might 

support different types of decisions that risk managers must make. We developed prototypes 

demonstrating application of new data and methods to decisions that had increasing levels of 

regulatory impact. Data types included transcriptomics, genomics, proteomics, nuclear and cell 

receptor assays, and various cell toxicity markers. Methods included molecular epidemiology 

and clinical studies, bioinformatic knowledge mining, short-duration in vivo bioassays, 

quantitative structure activity relationship approaches, and high-throughput in vitro bioassays. 

Conclusions 

NexGen has fostered extensive discussion in the risk science and management 

communities and advanced our ability to apply new science to better assess potential public 

health risks. EPA in collaboration with other federal agencies, are developing more specific 

prototype risk assessments informed by advanced biology that are anticipated to be more 

efficient that existing methods. 
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Advancing the Next Generation of Risk Assessment 

Introduction 

Background 

Advances in molecular and cell biology provide new insights into the causes and 

risk factors associated with disease, largely by evaluating molecular events that influence 

cell functions and interactions. High-throughput/high-content (HT/HC) assays and robotic 

implementation are generating large data streams at unprecedented speeds. Computational 

tools, automated analytical methods (bioinformatics ), and systems biology approaches are 

being developed to organize and interpret the information. Risk assessment and toxicity 

testing are poised to benefit greatly from these advances. 

The National Library of Medicine (NLM) and others are compiling, organizing, 

managing, and storing these data in support of efforts to understand public health 

determinants better and to help answer such questions as: Which chemicals are 

environmentally better choices? Why do individuals and specific subpopulations respond 

differently to chemical exposures? What happens when people are exposed to low levels 

of chemicals and to multiple chemicals? How do other factors like poverty and 

preexisting illness influence public health risk? How might evaluation and application of 

these data, methods and models be used to support environmental health decision 

making? 

To evaluate how new data types and approaches might enhance environmental 
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health risk assessments, the U.S. Environmental Protection Agency (EPA) collaborated 

with many U.S. and international organizations (Table 1) to consider the state of science 

and to develop case studies (illustrative prototypes) demonstrating various approaches 

that investigators could apply, singly or in combination, to different risk management 

problems. Our goal was not to evaluate all data and all risk management situations but to 

provide examples that could promote discussion in the risk assessment, risk management, 

and stakeholder communities, and that would facilitate the transition from strategy to 

practical application. This paper summarizes these efforts. 

Objectives 

Our specific objectives were to test whether we can identify specific patterns of 

molecular events that (1) are strongly associated with the adverse effects of chemical 

exposures; (2) are exposure-dose dependent within the range of environmental exposures; 

(3) can be shown to vary with risk factors such as genomic variants, mixture, and 

nonchemical stressor exposures; and ( 4) can be used as indicators of adverse health 

effects and chemical potency. Additionally, we wanted to consider how new types of 

assessments might address differing risk management needs or risk context and to 

develop decision rules for integrating and applying the available data. 

Methods 

We evaluated and integrated diverse types of data to evaluate if, and how, we can use 

advanced biological data to better inform risk assessment. 

Preparation for Prototype Development 
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We established the foundation for this effort by: (1) identifying EPA risk 

managers' needs and developing a strategy for the overall approach (Cote et al. 2012); (2) 

consulting with experts on the concepts for the prototypes (EPA 201 0); (3) holding a 

conference to inform the public about upcoming activities and to solicit advice (EPA 

2011 ); and ( 4) developing a framework that articulated the guiding principles for the 

NexGen effort (Krewski et al. 2014). 

Risk Assessments Targeted to Various Decision Contexts 

We developed seven prototypes that illustrate three decision contexts, which 

generally represent the types of environmental challenges risk managers face. The three 

decision contexts we defined are: (1) major scope, usually regulatory decision-making, 

generally aimed at nationwide exposures and associated risks; (2) limited scope, usually 

nonregulatory decision-making, generally aimed at more limited exposure, hazard, or data 

situations; and (3) screening and prioritization of chemicals for further testing, research, 

or assessment, or for emergency response (Figure 1 ). From left to right in Figure 1, the 

amount of traditional data available for assessment (e.g., in vivo rodent toxicity data, 

epidemiology data) and the confidence in the assessment conclusions decreases but the 

number of chemicals that can be evaluated increases. As a caveat, these decision contexts 

are generalized and do not capture all decisions risk managers face nor do they address 

the nuances of each situation. 

Systematic Review and Criteria for Study Selection 

Systematic review and criteria for study selection help ensure reproducibility, 
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transparency, and scientific acceptability of the NexGen assessment prototypes (DHHS 

2014; Meek et al. 2014; NRC 2014; Rhomberg et al. 2013). Study selection criteria are 

similar to those used for traditional data but we augmented them with criteria specifically 

applicable to new methodologies (e.g., Minimum Information About a Microarray 

Experiment standard) (McConnell et al. 2014 ). Rapidly evolving best practices for 

advanced biology and certain reporting requirements led many initially considered studies 

to be deemed inadequate for risk assessment purposes. 

The Prototypes 

We considered a variety of methods in the prototypes, which are summarized in Table 2 

(EPA 20 14b; Krewski et al. 2014 ). The following describes the results from the 

prototypes developed in the three illustrative decision-context categories. 

Major-scope Assessment Prototypes 

Major-scope prototypes explored how toxicogenomic studies of exposed human 

populations can inform risk assessment by characterizing early events in the cascade of 

events leading to adverse outcomes, biomarkers of exposure and effects, factors 

contributing to population variability and susceptibility, and the low exposure-response 

relationship (McHale et al. 2011 ). We developed these prototypes primarily to explore 

proof of concept and secondarily as examples of how new data types could inform (or be 

consistent with) chemical assessments already based on a robust traditional data set. 

We evaluated transcriptomic molecular data (epidemiological or clinical) in the 

range of environmental exposures for three environmental chemicals: (1) benzene and 
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other leukemogens (McHale et al. 2011; McHale et al. 2012; Smith et al. 2011; R Thomas 

et al. 2012; R Thomas et al. 2013; R Thomas et al. 2014); (2) ozone (EPA 2013a; Hatch 

et al. 2014; McCullough et al. 2014 ); and (3) polycyclic aromatic hydrocarbons (P AHs ), 

including tobacco smoke and benzo[a]pyrene (DHHS 2014; EPA 2013b)). We also 

considered genomic, proteomic, and epigenomic data as available. We evaluated 

exposures for benzene of <0.1 to 10 parts per million (ppm) and ozone of 0.5 ppm for 2 

hours. We used precise individual measures of exposure-dose for benzene and ozone 

(benzene urinary metabolites and 1802) (Hatchet al. 2014; Vermeulen et al. 2004). For 

PAHs exposures we used self-reported smoking We also considered animal molecular 

data for B[a]P (EPA 2013b). The PAR/tobacco smoke prototype differed from the 

benzene and ozone efforts by focusing on pathway mining of existing human microarray 

data from the Gene Expression Omnibus and ArrayExpress (NCBI 2014, EMBL-EBI, 

2014 ). This prototype demonstrated how the data could be used to evaluate whether 

smokers have a larger number of gene expression changes than nonsmokers that are 

similar to the gene expression changes associated with lung cancer. 

The prototypes focused on toxicogenomics anchored qualitatively and 

quantitatively to known health outcomes associated with these chemicals, that is, 

hematotoxicity and leukemia (benzene), lung inflammation and injury (ozone), and lung 

cancer (PAHs). These data-rich associations enabled us to draw on a wealth of chemical­

and disease-specific data to interpret the molecular biology findings. 

Limited-scope Assessment Prototypes 
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Limited-scope assessment prototypes explored approaches that fall between 

molecular human clinical and epidemiology studies (above) and in vitro, HT screening 

bioassays (below) in terms of confidence in the data to characterize public health risks, 

resources expended to collect data, and the number of chemicals that can be evaluated in 

a given period. We considered three approaches: (1) knowledge mining oflarge health 

databases (focusing on human tissue biomonitoring and diabetes data from NHANES 

[National Health and Nutrition Examination Survey] data) (Bell and Edwards 2014; EPA 

2014b; Patel et al. 2012; Patel et al. 2013a; Thayer et al. 2012); (2) short-duration, in vivo 

exposures using alternative (nonmammalian) species (largely focusing on the thyroid 

hormone disruptor mechanism, and zebrafish developmental outcomes for several 

hundred chemicals) (Padilla et al. 2012; Perkins et al. 2013; Sipes et al. 2011a; Sipes et 

al. 2011b; Thienpont et al. 2011; Villeneuve et al. 2014); and (3) short-duration, in vivo 

exposure rodent studies that correlated transcriptomic alterations following exposure to 

11 chemicals with cancer and noncancer outcomes as determined in traditional bioassays 

(RS Thomas et al. 2011; RS Thomas et al. 2012; RS Thomas et al. 2013a, RS Thomas 

2013c). Advantages of the limited-scope approaches compared to HT in vitro approaches 

include intact metabolism, intact cell and tissue interactions, and the potential to measure 

adverse health outcomes, including complex outcomes such as altered behavior and 

development. 

Screening and Prioritization 

The two screening and prioritization prototypes are (1) quantitative structure 

activity relationship (QSAR) models and use of analogous chemicals to expand available 
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information (also called "read-across") (EPA 2014c; Golbraikh et al. 2012; OECD 2014; 

Politi et al. 2014; Wang et al. 2011; Wang et al. 2012a); and (2) in vitro, cell-free, 

enzymatic and ligand-binding HT screening assays and modeling approaches as 

illustrated by EPA's National Center for Computational Toxicology program (DeWoskin 

et al. 2014; Judson 2010; Judson et al. 2011; Judson et al. 2012; Judson et al. 2013; 

Judson et al. 2014; Kavlock et al. 2012; Kleinstreuer et al. 2014; Knudsen and DeWoskin 

2011; Knudsen et al. 2013; Sipes et al. 2013) and the multiagency collaborative Tox21 

program (Attene-Ramos et al. 2013; Tice et al. 2013). The second prototype focuses on 

evaluating thyroid hormone disruptors (Cox et al. 2014; Rotroff et al. 2013; Sipes et al. 

2011a). 

Examining Human Variability in Responses 

Evaluating human variability in response to environmental factors and protecting 

vulnerable population segments is an often-stated goal. Unfortunately, the data to 

evaluate variability and susceptibility are generally scant. For the NexGen effort, we 

evaluated several data types to inform this issue: (1) adverse outcome networks to 

identify mechanistic commonalties among leukemogens and lifestyle factors (diet and 

stress) that alter leukemia risks (EPA 2014b; IARC 2012; Smith et al. 2011; R Thomas et 

al. 2012); (2) altered disease incidence in population segments that have specific genetic 

polymorphisms (EPA 20 14b ); (3) data for in vitro cells that retain an asthma phenotype in 

ozone studies (Duncan et al. 2012); ( 4) correlated measures of phenotypic differences 

among diverse subpopulations with expression patterns (EPA 2014b; Patel et al. 2012; 

Patel et al. 2013a); (5) HT in vitro data from cell lines with different genetic backgrounds 
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from the 1000 Genomes effort (Locket al. 2012; O'Shea et al. 2011); and (6) 

computational modeling in which variability in parameter values is simulated for 

differences among subpopulations (Knudsen and DeW oskin 2011; Shah and W ambaugh 

2010). See Zeise et al. (2013) for more details. 

Results and Discussion 

The NexGen prototypes demonstrate remarkable progress in our understanding of health 

and disease, and realization of the National Research Council's (NRC) vision embodied in 

Toxicity Testing in the 21st Century (NRC 2007). In the few years since NRC published that 

report, toxicity testing and risk assessment have begun shifting from the traditional use of animal 

data to using the new approaches the prototypes demonstrate. The new approaches consider a 

distinct and broader data array, foster mechanistic understanding of adversity, and move toward 

replacing uncertainty factors and extrapolations with data-derived probability distributions. 

In each decision context category, new methods and data types were identified 

that could help inform assessment efforts. Methods illustrated in the screening and 

prioritization (Tier 1) and limited-scope (Tier 2) prototypes originally were designed for 

qualitative evaluation of chemicals. Already, however, new and integrated approaches are 

being developed to estimate relative potencies and more rapid quantitative toxicity values 

for use in certain decision contexts. 

AOPs were used extensively to organize and interpret data for most of the prototypes and 

are viewed as extremely important in terms of linking molecular events to apical 

outcomes. The concept of AOPs and networks has gained considerable traction since it 

was first introduced (Ankley et al. 2010; Kleensang et al. 2014; NAS 2012; Tollefsen et 
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al. 2014; Vinken 2013). (Mechanism of action, mode of action, toxicity pathway and 

adverse outcome pathway are all terms used to describe causal events leading to toxicity 

and disease. The term AOP is not ideal as it sometimes erroneously conveys that toxicity 

results from novel events rather than perturbations of normal biology but AOP or AOP 

network is used throughput this paper due to its common use among a number of US and 

European Agencies.) 

Data quality and reporting are significant issues going forward. Our data searches 

to develop the prototypes identified many published studies that we could not use because 

either the data or the reporting did not adequately meet the criteria for use in health risk 

assessment. This situation results in part from the lag before best practices are developed 

and fully implemented in the research community and inconsistent application of criteria 

for data quality and reporting (EPA 2014b, McConnell et al2014). 

Integrating the available data into a coherent analysis is also a challenge. 

Rhomberg et al. (2013) reviewed 50 existing "weight-of-evidence" frameworks (termed 

evidence integration by NRC, 2014 ). They identified four phases of analysis consistently 

used in the 50 frameworks: "(1) defining the causal question and developing criteria for 

study selection, (2) developing and applying criteria for review of individual studies, (3) 

evaluating and integrating evidence and (4) drawing conclusions based on inferences" 

(Rhomberg et al. 2013). Steps 1 and 2, as used in the U.S. federal government, are 

discussed in some detail in DHHS (2014), McConnell et al. (2014), and NRC (2014). 

Supplemental Table 2 presents an "Illustrative Framework for Evidence Integration for 

New Data Types," focusing on Steps 3 and 4-evaluating and integrating evidence and 
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drawing conclusions based on inferences. Supplemental Table 2 draws on previous works 

for the basis of evidence integration (DHHS 2014; EPA 2013b; Meek et al. 2014; NRC 

2014). 

Major-scope Assessment Prototypes (Tier 3) 

We designed the Tier 3 prototypes to test the hypothesis that new data types could 

provide qualitative and quantitative results comparable to those that robust traditional 

data. Secondarily, we evaluated if new data types could add to information provided by 

robust traditional data sets. We discuss support for this hypothesis and several sources of 

variability below (EPA 2013a, 2013b, 2014b; Esposito et al. 2014: Hatchet al. 2014; 

McCullough et al. 2014; McHale et al. 2011; McHale et al. 2012; Smith et al. 2011; 

Thomas et al. 2014; VanDyck et al2014; Wang X et al. 2014). 

• AOP networks appear useful in predicting specific hazards for benzene and other known 

leukemogens (hematotoxicity), ozone (lung inflammation and injury), and PAHs (lung 

cancer), as well as providing quantitative biomarkers. Chemical and nonchemical 

stressors appear to perturb various pathways within the same disease associated network, 

but do not always affect the same expressed genes or pathway. Hence, overly simplistic 

descriptions of AOPs likely miss the potential for network-level interactions. The 

observed network modifications evaluated appear causally related to specific adverse 

effects. Evidence for causality included pharmacologic intervention to block identified 

pathway changes and concomitant amelioration of severity or incidence of specific 

adverse outcomes. We concluded that less well-studied chemicals inducing the same 

AOP or AOP network could be of concern for similar health outcomes. Conversely, lack 
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of an apparent mechanistic link to an adverse outcome could be a rationale for 

downgrading questionable in vivo data. Thus, we anticipate network level knowledge 

often will be highly valuable to understand causal mechanisms, integrate evidence, assess 

potential hazards less well-studied chemicals pose, and provide a method for cumulative 

assessment by grouping chemical and nonchemical stressors according to their common 

AOP network. As the prototypes illustrate, AOP networks also can help us evaluate the 

roles of human gene variants in subpopulation susceptibility or resistance (EPA 20 14b ). 

• AOP component biomarkers, can help inform exposure-dose-response relationships, as 

shown in the benzene and ozone prototypes (and the Tier 2 thyroid hormone disruption 

prototype discussed below) illustrate. For benzene and ozone, the AOPs appear to evolve 

with increasing exposures. For example, with benzene, gene and pathway alterations 

indicative of impaired immune function are present at all exposure levels evaluated (from 

<0.1 ppm to 10 ppm) but, at higher concentrations, AOPs characteristic of more severe 

toxicity (apoptosis and cell death) begin to emerge. Thus, data collection over a range of 

environmental concentrations remains important in evaluating new data types. Also, 

limited time-course post exposure data were available for ozone; various AOPs involved 

in lung injury evolved post exposure, demonstrating the potential dynamic nature of 

underlying mechanisms (EPA 2013b; McCollough et al. 2014). One of the most 

promising applications of exposure/effect biomarkers is the ability to measure events of 

interest directly in environmentally exposed humans; such applications are 

revolutionizing epidemiology. 

• Chemical exposures resulting in diseases appear to share AOP networks with diseases of 
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unknown origins (idiopathic or potentially naturally occurring disease). Chemically 

induced adverse effects evaluated here appear to add to naturally occurring backgrounds 

of disease, via shared mechanisms (EPA 20 14b ). As NRC (2009) and Crump et al. 

(1976) discuss, this finding has implications for an assumption oflow-dose linearity for 

cancer and noncancer outcomes at the population level. 

• Across the prototypes, we observed that a variety of factors could introduce experimental 

variability, including exposure concentrations, time post exposure and dosimetry, 

differences in techniques (microarray vs. RNAseq), experimental paradigms (in vivo vs. 

in vitro, primary cell culture vs. cell lines), cell and tissue type, individual genomic 

profile, coexposures, and lifestage. Without tight control of variability identifying causal 

events correctly can be difficult even knowing the adverse outcome. This highlights the 

need for careful experimentation and interpretation when potential outcomes are 

unknown (EP A20 14b ). 

Limited-scope Assessment Prototypes (Tier 2) 

We designed the Tier 2 prototypes to evaluate data from knowledge-mining, 

alternative species tests and from short-term in vivo studies for identifying potential 

hazards, refining mechanistic understanding, and characterizing the relative potencies of 

hundreds to thousands of chemicals in a more rapid fashion than with traditional methods. 

Confidence in these data generally ranks between Tier 3 and Tier 1 approaches. 

Highlights from the prototypes are briefly discussed next. 

• The limited scope approaches are faster and less expensive than the molecular 
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epidemiology and molecular clinical studies noted above. Furthermore, unlike the 

quantitative structure activity relationship (QSAR) models and HT screening data 

(discussed below), the data from in vivo studies are from intact systems for metabolism, 

normal architecture (for various cell types), and normal tissue interactions; and can be 

used to study more complex system-level outcomes, such as developmental and 

neurobehavioral outcomes. 

• In the data-mining exercises specific chemical exposures were associated with altered 

diabetes or prediabetes risks (e.g., chlorinated organics, heavy metals, selected nutrients). 

Exposures were determined via NHANES human tissue biomonitoring, and incidence 

was clinically defined within NHANES. Additional potential risk factors- multiple 

chemicals exposures and genetic and lifestyle susceptibility traits -were also identified 

(Bell and Edwards, 2014; EPA 2014b, Patel et al. 2012; Patel et al. 2013a, 2013b). In 

one example, 59 percent of people with high levels of cadmium, lead, and arsenic also 

had markers for diabetes. The data mining results are generally most suitable for 

hypothesis generation because the output only identifies associations among events in 

very large data sets. The availability ofbiomonitoring data and clinical diagnosis in the 

same individuals, however, increase the weight of evidence for these data. Also, others 

have provided traditional and computational data supporting a link between chemical 

exposure and diabetes (Audouze et al. 2013; Dimas et al. 2014; Inadera 2013, Thayer et 

al. 2012). 

• Two Tier 2 prototypes demonstrated use of short-duration exposures in alternative 

species and mammalian species, respectively. The results were evaluated with novel 
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molecular and computational approaches to provide insights into potential environmental 

risks. These short-duration exposure studies, in composite, successfully identified levels 

of exposures associated with key molecular events, AOP networks alterations, and 

adverse effects; provided useful data on complex mechanistic behaviors, effects of 

mixtures, species-to-species similarities and differences (Ankley and Gray 2013); and 

illustrated how these data could be used to evaluate potential hazards and chemical 

potencies. 

Screening and Prioritization Prototypes (Tier 1) 

For the first time in the history of risk assessment, new approaches can evaluate 

tens of thousands of chemicals relatively rapidly. Tens of thousands of chemicals 

covered by the European Regulation on Registration, Evaluation, Authorisation and 

Restriction of Chemicals Legislation are being evaluated using QSAR, and ~10,000 

chemicals are being screened in the US Tox21 program using innovative robotic 

technology and in vitro bioassays. Kavlock et al. (2012) note that "These tools can probe 

chemical-biological interactions at fundamental levels, focusing on the molecular and 

cellular pathways that are targets of chemical disruption." The two prototypes, QSAR 

models (Goldsmith et al. 2012; Venkatapathy and Wang 2013; 2012a; Wang et al. 2012b) 

and HT in vitro bioassays, were used to illustrate rapid screening and prioritization of 

chemicals (Judson et al. 2013; Kavlock et al. 2012; Rusyn et al. 2012; Sipes et al. 2013; 

Tice et al. 2013). Additional insights include: 

• An essential element to evaluation and application ofHT data is characterization of dose. 
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Researchers are developing methods using reverse dosimetry to extrapolate 

concentrations delivered to in vitro test systems to the comparable doses for in vivo 

exposure to rodents (or other test species) or to humans (in vitro-to-in vivo extrapolation 

[IVIVE]) (Hubal2009; Rotroff et al. 2010; Wetmore et al. 2012; Wetmore et al. 2013). 

IVIVE extrapolation supports quantitative comparisons of in vitro toxicity results with in 

vivo bioassay results for estimating dose-response following human exposures. 

• QSAR, in vitro, and in silica methods, are proving very useful for screening and ranking 

large numbers of chemicals for further evaluation and assessment, and urgent response 

situations where traditional data are lacking. Given the current state of the science, 

estimates of human disease risks based exclusively on QSAR and in vitro HT screening 

generally are too uncertain, however, in silica models are improving our understanding of 

these data. Insights into underlying mechanisms of toxicity, and the factors that might 

contribute to the variability in response to chemical exposure, are also progressing from 

these data streams and increasing their utility for understanding risks (Locket al. 2012). 

Caveats Pertaining to New Data Types in Risk Assessment 

Generally, much of the new toxicogenomic data is associative in nature, that is, 

exposure and adverse outcomes can be associated with hundreds to thousands of gene 

changes, not all of which are likely to be causal (Mendrick 2011 ). Associative data, at 

best, generally "suggest" a causal relationship between exposure and adverse health 

outcomes. Criteria to move from "suggestive" to "likely" causal include meta-analyses of 

multiple, independent studies yielding similar results, experimental evidence of 
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alterations in putative AOP networks with consequent health outcomes (such as 

pharmacological interventions, gene knock-in/-out studies, alterations in risks due to 

human gene variants in key pathways), or combinations of traditional and NexGen data. 

The prototypes demonstrated how different types of evidence in each decision support 

category might be characterized with respect to causality and evidence integration 

(Supplemental Table 2) (EPA 2013a, NRC 2014). Additionally: 

• The metabolism of many chemicals often is instrumental in toxicity. That most 

HT in vitro test systems are not metabolically competent should be taken into account. 

Although researchers are evaluating various approaches to add metabolic capability, 

satisfactory solutions are not yet available. Consequently, although positive results can be 

informative, negative results should not be interpreted, at this time, as a lack of toxicity. 

• Cell type, tissue, individual, subpopulation, species, and test system can affect 

how specific alterations in molecular events manifest as adverse outcomes or disease, 

even when the molecular signature is the same. This phenomenon likely is due, at least in 

part, to dosimetry, epigenomic differences, and genomic plasticity, which assessments 

should consider, as feasible. 

• Molecular profiles appear to be both dose and time dependent. Predicting adverse 

outcomes therefore can be challenging based only on "snapshots" of biological events. 

Some signatures do appear stable over time, however, and might serve as reliable 

indicators of chronic outcomes (RS Thomas et al. 20 13c ). 

• Adverse outcome arguments in support of a regulatory assessment cannot be 

made solely with gene expression data, as messenger ribonucleic acid expression levels 
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cannot be used to infer protein activity directly. These data could, however, be 

suitable for ranking and screening. Gene expression data also can be used in an 

assessment to complement other mechanistic data. 

• Our current ability to monitor multiple molecular processes (genomics, 

transcriptomics, proteomics, and epigenomics) in a single study is very limited, primarily 

due to expense. This lack of biological integration limits our understanding. 

• Only a few chemicals, represented in the literature at this time, have advance 

biology data adequate to support regulatory risk assessments, due primarily to 

experimental design and reporting issues. This limitation emphasizes the need for 

systematic data review. 

• A major issue in using molecular data in risk assessment is how best to interpret 

those data to predict observable adverse effects in humans. For example, how do changes 

in molecular events affect cells, changes in cells affect tissues and organs, and changes in 

organs affect the whole body? Researchers are collecting large amounts of HT/HC 

screening data on molecular-level effects, and the body of information on diseases and 

disease outcomes is substantial. Very sparse chemical-specific data are available, 

however, on intermediate levels of organization and on the sequence of cellular-level 

disruption of normal biology to effects at higher organizational levels. Even so, 

tremendous strides are being made in generating disease-specific information. 

• Characterizing population variability in response give the many sources of 

inherent biological variability (e.g. genetic, epigenetic variants) among individuals is a 

major challenge. A second challenge is that each particular health outcome-chemical 
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exposure pair involves combinations of these sources, evaluation of which might be 

compounded further by extrinsic factors (e.g. diet, psychosocial stressors, other 

exogenous chemical exposures). A third challenge is that different decision contexts 

present distinct needs regarding the identification-and extent of characterization-of 

interindividual variability in the human population. New approaches to examining 

sources of variability in responses include: (1) computational modeling approaches in 

which variability in parameter values is simulated and differences among subpopulations 

are explored (Diaz Ochoa et al. 2012; Knudsen and DeWoskin 2011; Shah and 

Wambaugh 2010); (2) HT in vitro data generation using cell lines with different genetic 

backgrounds from the 1000 Genomes effort (Lock et al. 20 12; O'Shea et al. 2011 ); (3) in 

vivo studies in genetically diverse strains of rodents to identify genetic determinants of 

susceptibility (Harrill et al. 2012; NIEHS 2014b ); ( 4) comprehensive scanning of gene 

coding regions in panels of diverse individuals to examine the relationships among 

environmental exposures, interindividual sequence variation in human genes, and 

population disease risks (Mortensen and Euling 2013; NIEHS 2014a); (5) genome-wide 

association studies to uncover genomic loci that might contribute to human risk of 

disease (Abecasis et al. 2012; Bush and Moore 2012; NHGRI 2014; Wright et al. 2012); 

and ( 6) association studies that correlate measures of phenotypic differences among 

diverse populations with expression patterns for groupings of genes based on 

coexpression (Friend 2013; Patel et al. 2012; Patel et al. 2013a; Weiss et al. 2012). New 

understanding of the contribution of epigenomics to disease is advancing rapidly with 

evaluation of changes such as differential methylation of deoxyribonucleic acid (Hansen 

et al. 2011; Rakyan et al. 2011; Teschendorff and Widschwendter 2012). 
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Verifying toxicity testing schemes and computational models is essential for using these 

new data and approaches for risk-based decisions. Central to this effort is a framework and 

criteria for determining whether the new data types are adequate for various types of 

decisions. The level of certainty needed in the data varies with their intended use because 

inaccurate results have increasing consequence and costs as decisions progress from 

screening, to further testing, to what safe levels are, to what regulatory actions should be 

taken (Crawford-Brown 2013). Traditional "validation" schemes that evaluate conventional 

assay and testing structures do not adequately address the potential uses of these new data 

and methods and would require years to implement. Thus, as the technology for rapid, 

efficient, robust hazard testing advances, the verification process also must advance, to 

ensure confidence in their use. Clear and transparent articulation of these decision 

considerations will be essential to the acceptance of, and support for, assessment results, and 

in the overall evidence integration 

Research Needs 

Filling the gaps in our understanding of complex chemical and biological interactions at 

different levels of biological organization requires advanced research programs and 

models. Specific areas include: 

• reliable, predictive molecular indicators for a wide variety of chemicals and diseases to 

assess hazard and characterize exposure and dose-response; 

• identification of the networked interactions among genes, proteins, cells, tissues, organs, 

individuals, and populations, and the sequence of events at different levels that can lead 
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to disease (AOP networks) (Hartung and McBride 2011; Kleensang et al. 2014; Leist et 

al. 2014; Patel et al. 2013b); 

• an integrated understanding of how genes are expressed and how the resulting proteins 

interact to maintain the body; 

• methods to group chemical and nonchemical stressors based on common AOPs to enable 

cumulative risk assessment; 

• data and methods to adjust for interspecies differences when assessing potential human 

toxicity based on nonhuman toxicity data; 

• data and methods to characterize dose-response curves quantitatively for low-dose 

exposures; 

• methods for non-aqueous exposures to chemicals present as gases or as airborne 

particles; 

• methods such as reverse toxicokinetics models to extrapolate concentrations used in 

cellular and cell-free systems to in vivo doses; and 

• methods to assess individual human variability due to genetic differences, preexisting 

disease and exposure, or adaptive and compensatory capabilities; and methods to 

incorporate this variability into population-level risk assessment. 

Several large, federal, integrated research efforts are ongoing in the United States and Europe 

to improve toxicity testing and risk assessment. These programs are developing new data, 

advanced tools, and innovative technologies to evaluate chemical toxicity, integrate scientific 

information into state-of-the-science risk assessment, and optimize confidence in risk 
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management decisions. 

Conclusions 

EPA has registered more than 80,000 chemicals for use in the United States, and 

over a thousand more are introduced every year (EPA 20 14a ). The overarching challenge 

to risk assessors is to obtain and interpret data for assessing these chemicals quickly and 

efficiently to support decisions to protect public health and the environment. This 

challenge includes: (1) producing safer chemicals; (2) tracking the movement of 

chemicals and their byproducts through the environment; (3) identifying the sources of 

chemical exposures; ( 4) understanding the critical biological processes and toxicity 

pathways by which chemicals cause disease; and (5) evaluating the contribution of 

environmental chemical exposure to the overall disease burden for the general and 

susceptible populations (EPA 2012). The prototypes presented in this report demonstrate 

how new data can be used to help address several of these issues. 

Based on the lessons learned in the NexGen program and elsewhere, several new 

types of high- and medium-throughput assessments are being advanced. Table 3 shows 

how characteristics of "fit-for-purpose" assessments could be tailored to support three 

illustrative decision-context categories. The table lists potential uses for NexGen 

assessments, data sources and types in different assessment categories, exposure 

paradigms used, incorporation of toxicokinetics, use of traditional data, hazard 

characterization, potency metrics, inferences drawn about the causal associations between 

exposures and adverse outcomes, and the numbers of chemicals that can be assessed, and 

the time to conduct any given assessment. Currently ongoing: 

24 

EPA-HQ-20 18-0008760000405 



• Thousands of chemicals having no or very limited traditional data will be analyzed based 

on their similarities in physical-chemical structure to known toxicants to estimate their 

toxicity (QSAR modeling); and rapid, robotically conducted in vitro bioassay data will be 

used to identify a chemical's potency to alter important biological processes as indicators 

of apical toxicity (e.g., ToxCast and Tox21 programs). 

• Thousands of chemicals will be evaluated using computer-based analyses of new and 

existing data, extracted from the published literature and then stored in extensive 

databases, to develop knowledge about the potential toxicity of chemicals and the causes 

of disease. Iteratively analyzing so much data from so many sources was previously 

impossible but is becoming the norm (e.g. Comparative Toxicogenomic Database, 

BioSystems ). 

• Hundreds of chemicals will be evaluated using a variety of new methods, including 

concerted, mechanistic approaches to understand the cumulative effects of multiple 

chemical and nonchemical stressors pose. 

Near-term efforts will include more case study examples for public input and peer 

review, and more opportunities to solicit stakeholder comments and participation. We are 

developing a verification process for new methods and data types that focus on 

integrating the evidence into various decision contexts for use by risk assessors. The goal 

is to increase confidence in these new approaches for use in risk assessment. We will 

continue to identify and highlight significant scientific gaps from prototype development 

to be addressed in future research planning. 
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Logistical and methodological challenges in interpreting and using these new data and 

methods in risk assessment remain significant. Regardless, we anticipate the new approaches 

demonstrated in the prototypes soon will have a variety of applications for risk managers within 

EPA and the risk assessment community at large, including identifying safer chemicals and 

processes and reducing risk from exposures to hazardous chemicals in the environment. Major 

chemical assessments, for the present will continue to be driven by traditional data but 

augmented by new data types. The reader is encouraged to frequent the Internet sites of EPA and 

other research programs to learn about the latest developments and progress toward planned 

objectives in this rapidly evolving science. 

Lastly, historically difficult risk assessment questions that new and emerging 

knowledge are likely to inform include: Why do individual and specific populations 

respond differently to environmental exposures? Are children at greater or lesser risk for 

certain exposures and effects, and if so, why? What happens when people are exposed to 

low levels of chemicals and mixture of chemical? How might other environmental factors 

like poverty and preexisting health conditions alter the response to chemical exposures? 
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Table 1. Governmental Partners 

• Army Corps of Engineers 
• California Environmental Protection Agency, Office of Environmental Health Hazard 

Assessment 
• European Chemicals Agency 
• European Joint Research Commission 

• Health Canada 
• L'Institut National de l'Environnement Industriel et des Risques 

• U.S. Food and Drug Administration and National Center for Toxicological Research 
• U.S. Centers for Disease Control and Prevention, National Center for Environmental Health, 

and Agency for Toxic Substances and Disease Registry 

• U.S. Department of Defense 
• U.S. National Center for Advancing Translational Science 

• U.S. National Institute of Environmental Health Sciences and National Toxicology Program 

• U.S. National Institute for Occupational Safety and Health 
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Table 2. Prototype use of new scientific tools and techniques (adapted from Krewski et al. 2014) 

Decision context Screening and Limited-scope Major-scope 
category Prioritization assessments assessments 

Hazard identification 
and dose-response 
assessment methods 

Quantitative structure 
activity relationship • • 
models 

Toxicity pathways 
analysis • • • 
High-throughput in vitro 
assays • • • 
High-content omics 
assays • • 
Biomarkers of effect • • 
Molecular and genetic 
population-based studies • 
Dosimetry and exposure 
assessment methods 

In vitro-to-in vivo 
extrapolation • • 
Phannacokinetic models 
and dosimetry • • • 
Biomarkers of exposure • • 
Cross-cutting 
assessment methods 

Adverse outcome 
pathways • • • 
Bioinformatics and 
computational biology • • • 
Systems biology • • • 
Functional genomics • • 
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Table 3. Possible characteristics of fit-for-purpose assessments matched to illustrative decision­
context categories. 

Characteristics Illustrative decision-context categories 

Screening and Limited-scope Major-scope 
Prioritization assessments assessments 

Uses ofNexGen Screening chemicals Generally nonregulatory Often regulatory 

assessments with no data other decision-making, decision-making, 

than QSAR or HT e.g. e.g. 

data, e.g. o Urban air toxics o National risk assessments 

o Queuing for research, o Potential water o Community risk 

testing, or assessment contaminants assessment 

o Urgent or emergency o Hazardous waste and o Special problems of 

response superfund chemicals national concern 
o Urgent or emergency 

response 

Data sources EPA databases such as NIH and EC databases All sources of policy-
ACToR and (e.g. PubChem, relevant data 
ToxCast BioSystems, Array 

Express, NHANES) 

New data types (Each QSAR, high-throughput High-content assays, Molecular 

assessment type also in vitro screening medium throughput epidemiology, 

uses the data types assays, read across. assays, knowledge clinical and animal 

from the column to the AOP development mined large data studies, AOP 

left.) sets, AOP network 
development development 

Exposure paradigms In vitro, in silica All relevant All relevant 
of studies considered 

Metabolism in test Little to none Partial to intact Intact 
systems 

Incorporation of Reverse toxicokinetic Reverse toxicokinetics Dosimetry and PK 

toxicokinetics models models, biomonitoring modeling, biomonitoring 

Use of traditional in In vitro assays anchored to None to limited, especially New data types augment 

vivo data pesticide registration and maybe used in AOP traditional; traditional data 
pharmaceutical data development remain basis for assessment 

at this time 

Hazards Nonspecific Nonspecific to Identified Identified 

Potency metrics Relative rankings based on Relative rankings and Risk distributions, 
QSAR or HT toxicity values toxicity values cumulative risks, community 

risks 

Likely strength of Suggestive Suggestive to likely Suggestive to known 
evidence linking 
exposure to adverse 
effect 

Numbers of lO,OOOs 100s-1000s lOOs 
chemicals that can be 
assessed 
Time to conduct Hours-Davs Hours-Weeks Davs-Years 
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I assessment 

QSAR =quantitative structure activity relationship; HT =high throughput, EPA= U.S. Enviromnental Protection 
Agency, ACTor= Aggregated Computational Toxicology Resource (EPA), ToxCast =Toxicity Forecaster, NIH= 
National Institutes of Health, EC =European Community, NHANES =National Health and Nutrition Examination 
Survey, AOP =adverse outcome pathway 

Figure 1. Three broad decision context categories are shown across the top (white type), below 
which are the seven "fit-for-purpose" prototypes developed for this effort (black type). PAHs = 
Polycyclic aromatic hydrocarbons; B[a]P = Benzo[a] pyrene. 
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Figure 2. Effects of variability in (A) pharmacokinetics (PK), (B) pharmacodynamics (PD), (C) 
background/exposures, and (D) endogenous concentrations. 

In (A) and (B) 
baseline condi 
endogenously 1 
Health Perspe( 
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Figure 2. Effects of variability in (A) pharmacokinetics (PK), (B) pharmacodynamics (PD), (C) 
background/exposures, and (D) endogenous concentrations. 
In (A) and (B), individuals differ in PK or PD parameters. In (C) and (D), individuals have different initial 
1 1 0 1"' 0 / • 0 1 {"' .1 0 ' 1 0 0 1 
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In (A) and (B), individuals differ in PK or PD parameters. In (C) and (D), individuals have different initial 
baseline conditions (e.g., exposure to sources outside of the risk management decisions context; 
endogenously produced compounds) (Zeise et al. 2013). Reproduced with permission from Environmental 
Health Perspectives. 
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Supplemental Table 1. List of Technical Papers in Association with the NexGen Report 
That Provide Additional Scientific Details 

Prepar by Daniel Krewski, Margit Westphal, Mel 
ation Andersen, Greg Paoli, Weihsueh Chiu, Mustafa Al-Zoughool, Maxine Croteau, Lyle Burgoon, and 
for Ila Cote (2014) 

Prototy qcc!'ccn11'nj by Ila Cote, Paul Anastas, Linda Birnbaum, 

pe Becki Clark, David Dix, Stephen Edwards, and Peter Preuss (2012) 
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Anrf'r"l'nrl' by 

~~~~~~~~~~~==~~~==~~~~~~~~~--------------------------_, 

Prototy Edward Perkins, Gerald Ankley, Kevin Crofton, Natalia Garcia-Reyero, Carlie LaLone, Mark Johnson, 
pes Jose h Tiet e and Daniel Villeneuve 2013 

Shor 
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Non 
mam 
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by Richard Judson, Robert Kavlock, Woodrow Setzer, Elaine Cohen Hubal, Matthew Martin, Thomas 
Knudsen, Keith Houck, Russell Thomas, Barbara Wetmore, and David Dix (2011) 

EPA-HQ-20 18-0008760000424 



Key 
Risk 

Assess 
ment 
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Supplemental Table 2: An Illustrative Framework for Evidence Integration Focusing on New Data Types Presented in the NexGen 
Report. This causal determination framework illustrates how evidence integration and inferences about causality could be made using new data types. The left 
column smrunarizes the prototype results, the middle column presents evidence for causality exemplified by the prototypes, and the right column illustrates how such 
prototypic evidence might be integrated and weighed. The first set of prototypes is unique in that the prototypes have known human health effects and well­
documented public health risks. For these prototypes, the "Evidence Integration" column evaluates how successful new data types were in predicting known outcomes. 
Criteria for study selection, evidence integration and causal determination considered here are discussed in McConnell et al, 2014, Meek et al2014, NRC 2014, 
USDHHA 2014, EPA 20 13a; Rhomberg et al. 2013. Modifications of the Bradford-Hill criteria (e.g. consistency, coherence, biologic plausibility) continued to be 
useful in the evaluation of new data types. As presented in this Table, confidence in causality ranges from suggestive to likely, largely based on the understanding of 
the biologic context in which new data types are embedded. "Likely" is generally for the limited nmnber of cases where the new data types are well anchored to 
adverse outcomes by a combination of observational and experimental data, and include mechanistic and systems biology understanding. Biologic context need not be 
chemical specific but can be derived from disease/disorder specific knowledge or from analogy with related chemicals. In practice, for the near-term much of the new 
datatypes are anticipated to be suggestive and most appropriated for screening and prioritization and, perhaps, limited-scope assessments. Of note is that, contrary to 
traditional approaches, some new approaches can be used to estimate relative potencies or toxicity values in the absence of clearly identified hazards. Major 
assessments are anticipated to be augmented by new data types but, for the near term, continue to be based on traditional data. To simplify the table, similar prototypes 
with shared attributes are aggregated where possible. 

Supplemental Table 2: An Illustrative Framework for Evidence Integration Focusing on New Data Types Presented in the 

NexGen Report. 

Prototypes I Evidence for Causality I Evidence Integration 
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Tie Molecular epidemiology •Specific pattern alterations in molecular events appear consistently Suggestive to likely: Evidence is consistent, 

r3 and clinical studies: and strongly associated with known intermediate events and known coherent, and biologically plausible that the 
o Illustrated that new data hazards at environmental exposure levels (EPA 2014b, Thomas Ret al. observed molecular events are causally related 

types (when properly 2014, McCullough et al. 2014, EPA 2013a, McHale et al. 2009,2012, to adverse effects Implications based on 
collected, analyzed, and Smith et al. 2011). Data for tobacco smoke was reported in the comparisons to robust traditional risk 
reported) appear to Extxcssion Omnibus (GEO) or Am!VExDrcss (AE). Also see Cooper et al. assessments: 
provide results 2014, Van Dyke et al. 2014, and Wang et al. 2014). o For benzene and ozone, identified molecular 
comparable to robust, • Exposure-dose was measured for benzene and ozone using urinary events are likely causally related to known 
traditional human data, biomarkers and radiolabeled ozone, respectively (Hatchet al. 2014, adverse outcomes in a dose-dependent 
and could be used, when Thomas Ret al. 2014, and McHale et al. 2009). Tobacco smoking fashion. Mechanistic links between molecular 
linked to mechanistic exposures were self- reported substantially increasing uncertainty for events, intermediate effects and adverse 
information, to: exposure-dose-response characterization and highlighting the need for outcomes are well understood. Pharmacologic 
(1) evaluate potential accurate exposure characterization (EPA 20 14b ). intervention that blocks implicated pathways 
hazard posed by • Dose-dependent alterations are observed in concomitantly collected also blocks or ameliorates adverse effects. 
chemicals with no or molecular events and adverse effects, in the range of enviromnental o In comparison, the molecular data for P AH 
limited traditional data, exposure (benzene and ozone). Some molecular pathways are altered at all are considered suggestive of a causal 
(2) augment traditional concentrations; other molecular and toxicological effects emerge with association between P AH and lung cancer 
assessments, or (3) increasing dose. Molecular patterns which occur consistently across all due to a lack of an observed exposure-dose-
better inform traditional concentrations appear preferable as biomarkers (Hatchet al. 2014, Thomas response relationship (likely due to 
risk assessment issues, et al. 2014, McCullough et al. 2014, and EPA 2013a). uncertainties in exposure characterization), 
such as human • Pharmacological interventions has been shown to modifY identified AOPs, and data quality, analysis, and reporting 
variability and and, concomitantly, the incidence or severity of the adverse outcomes limitations. Only ~8% studies in GEO and 
susceptibility, cross- (McCullough et al. 2014, Hatzimichael and Crook 2013, Cooper et al. AE met study selection criteria. 
species and in vivo to in 2014). 
vitro comparisons, 
cumulative risk, and low 
exposure-dose-response 

relationships. 
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• Additional evidence for the involvement of specific pathways in disease is 
provided by identification of naturally occurring human gene variants in 
the AOP network that alter susceptibility and risks (Cooper et al. 2014, 
Vawda et al. 2014, Wang et al. 2014, Moreno-Macias et al. 2013, 
Hatzimichael and Crook 2013, Zhuo et al. 2012, Sille et al. 2012, North et 
al. 2011, Shen et al. 2011, Smith et al. 2011, Schlenk et al. 2008). 

• 
Adverse outcome pathway (AOP) networks are also disrupted by other 
chemical and nonchemical stressors known to alter the incidence of the 
specific disease/disorder under consideration; thus, AOP networks provide 
a tool for evaluating cumulative risks based on mechanistic commonalities 
(IARC 2012, Thomas et al. 2012, Smith et al. 2011) 

• Supporting data is provided by multiple molecular epidemiology and 
clinical studies and chronic animal bioassays and coherence with other 
systems biology data (NIH BioSystems: lung 

'""'~-'-"C"'-'-' non-small cell); Comparative Toxicogenomics 
-"--"'--~'~,~~"'-=·EPA 2013a,b: BaP and cancer, ozone and 

respiratory disease). 
• While species and in vitro differences exist, these examples provide 

consistent, coherent biologically plausible data linking specific omic 

alterations with s ecific diseases. 

Suggestive vs. likely: In general, molecular 
data alone associated with adverse outcomes 
are expected to be only suggestive or 
inadequate for causal detennination. To rise to 
likely, the following are currently, generally 
necessary: multiple, consistent, high-quality 
observational studies with similar results; 
understanding of the cascade of events between 
molecular events to adverse outcomes, and 
experimental evidence showing that reversal of 
pathway alterations blocks or ameliorates 
adverse outcome; or naturally occurring 
experiments where gene variants alter 
incidence or characteristic of disease. 
Important variables such as experimental 
paradigm (e.g., in vivo vs. in vitro), cell type, 
tissue type, and species also require 
consideration. Suggestive data are likely to be 
most useful for hypothesis generation, 
discovery, screening and prioritization, and 

potential augmentation of traditional data. 
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Tie 

r2 

Knowledge mining and 
meta-analysis prototype 
illustrated how large 
searchable databases can 
be used to identify, 
organize, integrate, and 
analyze existing data in 
an automated 
(computerized) fashion to 
discover new insights into 

public health risks. 

Short-duration in vivo 
exposure bioassays data 
use in either alternative or 
rodents species is 
illustrated in two 

prototypes. 

•Knowledge mining and meta-analysis discovered associations between 
known exposures (biomonitoring) to several environmental agents e.g. 
metals and persistent organics chemical) with prediabetes/diabetes using 
the Centers for Disease Control and Prevention's National Health 
Assessment Examination Survey. Human tissue biomarker and clinical 
outcome data are from the same individuals (EPA 2014b, Patel2012a, 
2013). 
Supporting data are found elsewhere in the literature 

2014, 
Thayer et al. 2012). 

• No systems biology context or AOP is available data from NHANES. 
Information on biologic context is available from the literature but 
currently not easily accessible in high or medium throughput approaches 
(Audouze et al. 2013, Inadera 2013). 

• Prototype also explored possible links among site specific chemical 
exposures, ethnicity, genetic variants and diabetes risks (Dimas et al. 2014, 

EPA 2014b, Patel and Cullen 2012). 

Suggestive: Could rise to likely with the types 
of supporting data noted above under 
"Suggestive vs. likely." 

Associative data generally most useful for 

hypothesis generation. 

Suggestive to likely for consistent, coherent, 
biologically plausible adverse phenotypic 
outcome data from nonmmmnalian, vertebrate 
species. Confidence is generally higher for 
evolutionarily conserved processes. 
Suggestive: For transcriptomics changes 
correlated to adverse outcomes studies and 
coupled to AOPs. 

Short-duration, in vivo exposure bioassays- alternative 
(nonmammalian) species prototype included example Zebrafish 
developmental assay results, characterization of thyroid specific 
mechanisms, and predictive modeling of complex dose-response 
phenomena. Padilla et al. 2012, reported AC50s in a Zebrafish 
developmental assay for 305 chemicals. Potencies for individual chemicals 
and chemical classes were shown to range over several orders of magnitude 
(1 nM-80 11M). For certain classes of chemicals, 80-100% of the chemicals 
in a class tested positive (embryo death or structural defects). Perkins et al. 
2013 illustrated the use of alternative species to help articulate mechanisms 

High-content assays with measurable adverse 
showing an AOP network for thyroid disruption with example toxicants and 

outcomes (e.g., zebrafish developmental assay) 
alternative models applicable to both human and ecological hazard 

generally have greater evidentiary weight than 
assessment. Also, discussed are how predictive models coupled to 

initiating event assays (e.g. transcriptomic 
mechanistic understanding can be used to better characterize dose-response 

assays). Some systems biology context is 
(Sipe et al 2011 b), circadian variations (Eisenberg et al. 2008) and exposure 

needed for limited scope assessments for 
window-response relationships (Dewoskin et al. 2014). For more details on 

human risk, e.g. cross species conservation, 
alternative species bioassays see Villeneuve et al. 2014, Perkins et al. 2013, 

AOPs. Alternative species outcome data alone 
c..:A:...:.::;nk:::ce::.:l:.~....:::an=d'-'G""r:.::a::.z....:2:.:0:..:1:.::2:.L..:..... --------------------' are sufficient for ecologic risk assessment. 

Cross-species extrapolation and subchronic 
measurement of indicators introduces 
additional uncertainties as compared to human48 
data discussed above data. Reverse 
toxicokinetic models are needed to estimate 
equivalent human doses. 
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Short-duration, in vivo exposure bioassays - rodents prototype 
correlated transcriptomic alterations with adverse outcomes, as 
determined in traditional bioassays for 10 chemicals (Thomas RS et al. 
2011, 2012, 2013, 2014). Cconsistency of the correlation between 
transcriptional changes and adverse effects across different exposure periods 
was also demonstrated (5 days to 13 weeks) (Thomas, R. S. et al. 2013d). 
Ttranscriptional changes appeared at somewhat lower concentrations than 
traditional effects. Transcriptomic studies alone cannot predict specific 
hazards but may be useful to relatively ranking chemical potencies to induce 
biologic alterations that may proceed adverse outcomes. In general 
transcriptomic data needs some biologic context (e.g. AOPs) to increase 

confidence ofbiologic significance. 

Tie QSAR and molecular QSAR models can predict chemical-specific toxicity values based on Suggestive to Likely: TopKat Model 

rl docking models are used chemical inherent properties for a number of data poor chemicals. predictions of potency when model is 
to generate potency • Models are developed based on chemical structures and known outcomes appropriate for chemicals evaluated; not 
estimates and, with less for data rich chemicals. generally predictive of dose-response for 
confidence, hazards. Read- •OECD is harmonizing international use ofQSAR hazard models and read- specific hazards; does generate a LOAEL for a 
across is also considered across in the OECD QSAR toolbox (OECD 2014 b,c,e) subset of the data poor chemicals that meet 
(i.e. filling data gaps for • Often the consensus of a suite of appropriate models is the preferred confidence criteria. Additional OECD models 
data poor chemicals by approach. and read-across can improve confidence in 
analogy with structurally • Often models better predict potency than specific effects. hazard characterization. 
related more data rich • Issues exist around characterizing the uncertainty in QSAR and related 
chemicals). read-across approaches, and in the transparency of some models (see Ball 

et al. 2014; Patlewicz et al. 2013a)]. 

High-throughput, in High-throughput in vitro assays based on biological process disruptions Suggestive: When coupled with understanding 
vitro bioassays and are interpreted in a systems biology and AOP context, and associated with of the AOP(s). Could rise to likely with the 
virtual tissue models are adverse outcomes (EPA 2014b, Judson et al. 2014, Attene-Ramos et al. types of supporting data noted above under 

discussed. 2013, Tice et al. 2013). Virtual tissue modeling provides additional tools "Suggestive vs. likely". 

for evaluating data limited chemicals (Knudsen et al. 2013). 
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